咨询电话 0514-86166160

行业资讯

无功功率补偿技术及发展

发布时间:2017-05-03 18:05:55 浏览人数:

无功功率补偿技术及发展 无功功率补偿技术及发展   1.无功功率补偿装置的主要作用是:提高负载和系统的功率因数,减少装备的功率消耗,稳定电压,提高供电质量。在长距离输电中,提高系统输电稳定性和输电能力,平衡3相负载的有功和无功功率等。  2.无功功率补偿技术的现状目前,国内电网采取的电容补偿技术主要是集中补偿与就地补偿技术。就地补偿技术主要适用于负荷稳定,不可逆且容量较大的异步电动机补偿(如风机、水泵等),其它各种场合仍主要采取集中补偿技术。下面是几种经常使用的补偿装置。  2.1 同步调相机 初期的无功功率补偿装置主要为同步调相机,多为高压侧集中补偿。同步调相机目前在现场仍有少许使用。  2.2 静止补偿装置的基本作用是连续而迅速地控制无功功率,即以快速的响应,通过发出或吸取无功功率来控制它所连接的输电系统的节点电压。静止补偿器由于其价格较低、保护简单、工

  1.无功功率补偿装置的主要作用是:提高负载和系统的功率因数,减少装备的压力容器水压实验机功率消耗,稳定电压检查井盖承压强度实验机,提高供电质量。在长距离输电中,提高系统输电稳定性和输电能力,平衡3相负载的有功和无功功率等。

  2.无功功率补偿技术的现状目前,国内电网采取的电容补偿技术主要是集中补偿与就地补偿技术。就地补偿技术主要适用于负荷稳定,不可逆且容量较大的异步电动机补偿(如风机、水泵等),其它各种场合仍主要采取集中补偿技术。下面是100t电液伺服万能实验机几种经常使用的补偿装置。

  2.1 同步调相机 初期的无功功率补偿装置主要为同步调相机,多为高压侧集中补偿。同步调相机目前在现场仍有少许使用。

  2.2 静止补偿装置的基本作用是连续而迅速地控制无功功率,即以快速的响应,通过发出或吸取无功功率来控制它所连接的输电系统的节点电压。静止补偿器由于其价格较低、保护简单、工作可靠,在国内还是主流补偿装置。静止补偿器(SVC)前后出现过很多类型,目前来看,有发展前程的主要有直流减震弹簧门窗3性实验机专用实验机助磁饱和电抗器型、可控硅控制电抗器型和自饱和电抗器型3种。上述第2种又可分为:固定连接电容器加可控硅控制的电抗器(fixedcapacitor&thyristor controlledreactor,FC-TCR);可控硅开关操作的电容器加可控硅控制的电抗器(thyristor switc数显式弹簧实验隔墙板抗弯实验机机hedcapacitor&thyristor controlled reactor,TSC-TCR)。实际上,由断路器橡胶刚度专用实验电镀耐摩擦实验机机(电磁型交换接触器)操作的电容器和电抗器在电网中正在大量使用,可以说这类补偿技术是静态的,由于它不能及时响应无功功率的波动。这类装置以电磁缠绕膜拉力实验机型交换接触器为投切开关,由于受电容器承受涌流能力、放电时间及电容器分级和接触器操作频率、使用寿命等因素制约,因此没法避免以下不足:

  (1)补偿是有级的、定时的,因此补偿精度差,跟随性不强,不能适应负荷变化快的场合;受交换接触器操作频率及寿命的限制,静态补偿装置1般均设有投切延时功能,其延时时间1般为30s。对1般稳定负荷,即负荷变化周期大于30s的负荷,这类补偿装置是有效的,但对1些变化较快的负荷,如电梯、起重、电焊等,这类补偿装置就没法进行跟踪补偿。安全带拉伸实验机

  (2)不能做到无涌流投入电容器,对接触器加电抗器方案,增加消耗较大,对容性接触器方案,事故率较大,对金属化电容器的使用寿命影响很大;目前,低压电力电容器以金属化自愈式电容器为主,这类电容器的引线喷金属端面对涌流承受能力有限,因此,涌流的大小及次数是影响电容器使用寿命的主要因素。

  (3)运行噪声较大。

  (4)由于控制部份的负载是接触器的线圈,在投切进程中,造成火花干扰,影响补偿装置的可靠性和使用寿命。针对上述问题,基于智能控制策略的TSC补偿装置正在引发关注。TSC的基高温持久实验机本结构如图1所示。事实上,如果能够进行动态无功功率补偿则能够克服以上不足。

  

无功功率补偿技术及发展

  图1 TSC的基本结构

沙浆抗折实验机

  将微处理器用于TSC,可以完成复杂的检测和控制任务,从而使动态补偿无功功率成为可能。基于智能控制策略的TSC补偿装置的核心部混凝土干湿循环实验机箱包轮子耐磨实验机件是控制器'>控制器,由它完成无功功率(功率因数)的丈量及分析,进而控制无触点开关的投切,同时还可完成过压、欠压、功率因数等参数的存贮和显示。因此,与断路器操作的电容器装置相比,虽然单台无触点开关的造价比交换接触器高,但该装置依然有以下几个特点:

 液晶电子拉力实验机 ①无涌流,允许频繁操作;

  ②跟踪响应时间快,动态跟踪时间0.02~2s(可调);

  ③采取编码循环式投切电容器,可均匀使用电容器,从而延长全部装置的使用寿命;

  ④具有各种保护功能,如过压保护改变疲劳实验机、缺相保护及谐波份量超限保护等。

  2.3静止无功产生器(static vargenerator,SVG紫外实验机)又称静止同步补偿器(STATCOM),是采取GTO构成的自换相变流器,通过电压电源逆变技术提供超泥浆脉冲产生器水压实验机前和滞后的无功,进行无功补偿。与SVC相比,其调理速度更快且不需要大容量的电容、电感等储能元件,谐波含量小,同容量占地面积小,在系统欠压条件下无功调理能力强。SVG的等效电路如图2所示。其中,变压器与补偿器可看做逆变器电sht4305能实验机路。从电力系统1侧来视察,大家可以把逆变器电路看成是1个产生基波和谐波电压的交换电压源,控制补偿器基波电压大小与相位来改变基波无功电流的大小与相位。当逆变器基波电压比交换电源电压高时,逆变器就会产生1个超前(容性)无功电流。反之,当逆变器基波电压比交换电源电压低时,则会产生1个滞后(感性)无功电流,因此能与系统进行有功、无功之间的交换。若控制方法得当,SVG在补偿无功功率的同时还可以对谐波电流进行冷热冲击实验机补偿。在稳态情况下,SVG的直流侧和交换侧之间没有有功功率交换,无短路实验机功功率在3相之间活动,因此直流只需要较小容量的电容便可。另外,SVG装置用铜和铁较少,且有良好的补偿特性,因此是新1代无功补偿装置的代表,有很大的发展前程。

  

无功功率补偿技术及发展

  图2 SVG等效电路

  我国首台20MvarSVG于1999年3月并入河南电网试运行。

  3.无功功率补偿技术的发展趋势

  3.1 电力有源滤波器电力有源滤波器(activepower filter,APF)的基本原理如图3所示。

  

无功功率补偿技术及发展

  图3 电力有源滤波器的基本原理

  电力有源滤波器的交换电路分为电压型和电流型。目前实用的装置90%以上为电压型。从与补偿对象的连接方式来看,电力有源滤波器加速度冲击实验机可分为并联型和串连型。并联型中有单独使用、LC滤波器混合使用及注入电路方式,目前并联型占实用装置的大多数。目前电力有源滤波器仍存玻璃镜片抗弯实验机在1些问题,如电流中有高次谐100kn万能材料实验机波,单台容量低,本钱较高等。随着电力半导体器件向大容量、高频化方向发展,这类既能补偿谐波又能补偿干湿循环实验机无功的装置必定有很好的发展前景。

  3.2 综合潮流控制器 综合潮流控制器(unified power flowcontroller,UPFC)将1个由晶闸管换流器产生的交换电压串入并叠加在输电线相电压上,使其幅值和相角皆可连续变化,从而实现线路有功和无功功率的准确调理,并可提高输送能力和阻尼系安全工具拉力实验机统振荡。美国西屋电气企业研制出1种简化的UPFC称为串连潮流控制器(serialpower flowcontroller,SPFC),其基本结构和SVG类似,区分是其输出变压器串连接入输电线。SPFC造价明显低于UPFC,功能可与之相比且优于SVG。中国电力科学研究院、东南京大学学、清华大学等单位也进行了理论研究和仿真实验,研究结果表明:UPFC具有良好的效果和功能。

  4.结束语

  由于性价比较高全钢轮胎均匀性实验机,目前我国广泛使用的还是静止补偿器(SVC)。其中,能够进行无功功率动态补偿的基于智能控制策略的TSC依然需要大力推行。实际上,国内外对SVC的研究仍在继续,研究的重点集中在控制策略上,试图借助于人工智能提高SVC的性能。随着大功率电力电子器件技术的高速发展,未来的功率器件容量将逐渐提高,应插头线温升实验机用有源滤波器进行谐波抑制,和利用柔性交换输电系统技术进行无功功率补偿,势必成为今后电力自动化系统的发展方向。

无功功率补偿技术及发展
XML 地图 | Sitemap 地图